Using Machine Learning to Improve De-identification Accuracy in Primary Care Electronic Medical Record Data

Yale Wang¹, Andy Gibb¹, Sabrina Wong^{1,2}, Rubee Dev^{1,2},
Anita Kapanen³, Peter S. Loewen³, Peter J. Zed³

¹ Centre for Health Services and Policy Research, UBC; ² School of Nursing, UBC; ³ Faculty of Pharmaceutical Sciences, UBC

Background

- The Canadian Primary Care
 Sentinel Surveillance Network
 (CPCSSN) extracts data from
 consenting providers'
 electronic medical record
 (EMR) systems across Canada.
 BC-CPCSSN is the BC node of
 the project, based at UBC.
- BC-CPCSSN collaborated with the UBC Faculty of Pharmaceutical Sciences' Pharmacists in Primary Care Network program to analyze over 100,000 pharmacists' notes.
- Personal identifiers must be removed from the data before analysis.
- CPCSSN currently de-identifies
 data by matching words in
 EMR records with a list of
 known names from past
 records and public censuses.
- More text data means uncommon names become more likely.
- This study aims to improve deidentification accuracy by employing a novel machine learning approach.

Methods

- A sample of 500 pharmacists' notes were manually labeled as a reference selection; 73 names were identified.
- CPCSSN's existing deidentification method and five additional pre-trained machine learning models were chosen from open-source libraries.

Problem

How to identify unknown names from thousands of lines of text?

Solution: Named-entity recognition

Person

Discussed next steps with Dr Ferugson.

Saw Wilma today re reaction to medication.

Prescribed amoxicillin for chest infection.

Will follow up with Will in two weeks.

Person

Place

Referring patient to Dr Sharon at Healthy

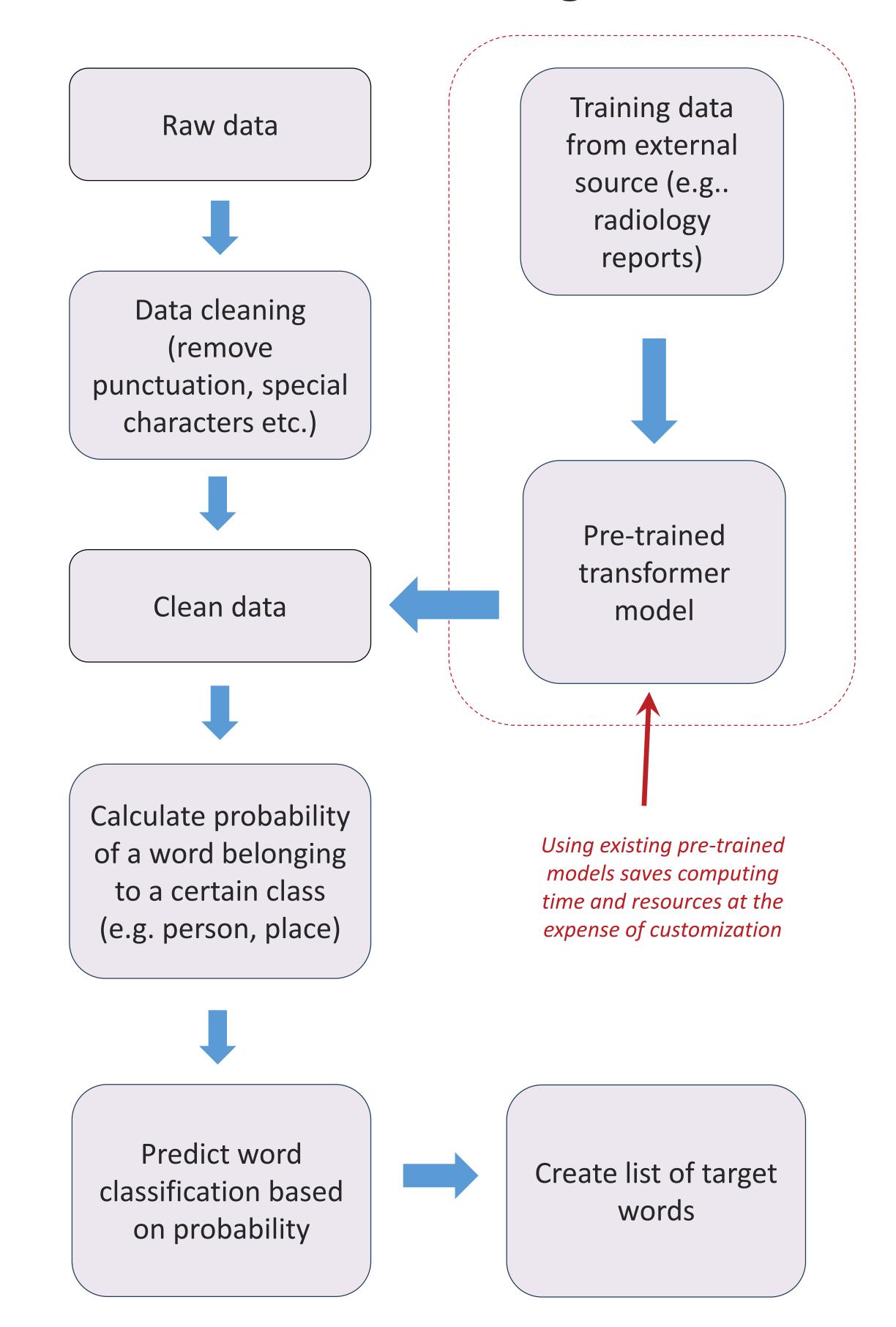
Patient medical clinic.

Not person

Ms Crohn has Crohn's Disease (no relation)

Person Diagnosis

Implementation of pre-trained machine-learning models



Results for each model

	CPCSSN	Spacy English Model Only	Spacy English Model + Spacy Medical Model	English Model + Medical Term List	Stanford Deidentification model
Precision	93.8 %	41.2 %	56.2 %	56.2 %	92.0 %
Recall	83.5 %	100 %	68.5 %	97.3 %	94.5 %
F1	88.4 %	58.4 %	61.7 %	71.2 %	93.2 %

Precision (aka positive predictive value) measures the proportion of true positive cases to all positive cases = true positives / (true positives + false positives) **Recall** (aka sensitivity) measures the ratio of the number of true positive cases to all correct cases = true positives / (true positives + false negatives) **F1** score is the harmonic mean of precision and recall = $2 \times \text{precision} \times \text{recall}$ / (precision + recall)

- These models were applied in turn to the same set of notes.
- Names were identified by model from context ("namedentity recognition").
- Model performance was assessed using F1 scores, where a higher score indicates more accurate name identification.
- The highest-scoring model was applied to full dataset.

Results

- Existing de-identification method achieved an F1 score of 88 %.
- The Hugging Face model, trained by Stanford University, outperformed others with an F1 score of 93 %.
- Other selected models, such as the Spacy Natural Language Processing Model, and their combinations yielded F1 scores considerably lower than the existing method.
- Identified misspellings.
- However, word list included many more words than names alone, requiring human intervention to finalize list.

Conclusions

- Machine learning models show clear potential for enhancing the deidentification of EMR records.
- These models also aid in mitigating scalability issues associated with searching larger datasets for names.
- Limiting factor is human intervention still required to remove non-names.
- Further research on larger datasets is warranted to demonstrate scalability effectively.

